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Abslraet We study the four-state antikmmagnetic Pot& model with next-nearest- 
neighbour femmagnetic interactions on the simple cubic lattice by the Monte Carlo 
melhcd. The ratio J2/ J1 of the strength of the next-nearest-neighbour interactions 
to that of the nearest-neighbour interactions is to te 10. We analyse the finite-size 
effects of the energy, the specific heat, the fourth-order cumulanI, the magnetization, the 
susceptibility and the effeclive Vansition temperatures. with the help of the finite-size 
=ling theoly we mnclude that the Vansition of the model b assigned to te of first 
order. 

1. Introduction 

At a Erst-order phase transition, the specific heat and the susceptibility show 
singularities of the delta function type as a result of discontinuities in the energy 
and magnetization, respectively. This behaviour can only be seen in the infinite 
system. Recently much attention has been paid to the effects of the finite size of the 
system at the transition (Priman 1990). In the finite system, the singularities of the 
energy and the magnetization are smoothed out and those of the specific heat and 
the susceptibility rounded off. 

Imry (1980) showed for the first time that the finite-size rounding of the transition 
temperature was proportional to L-d where L was a linear size and d was a spatial 
dimension of a system. 

Binder and Landau (1%) proposed a phenomenological theory for finite-size 
effects at a field-driven first-order phase transition. The king model below the critical 
temperature undergoes the transition with varying magnetic field. Borgs and Koteckjr 
(1990) discussed the finite-size scaling at the transition from a rigorous point of view. 

The q-state ferromagnetic Potts model has a temperaturedriven first-order phase 
transition if q is large enough and d 2 (Wu 1982). Challa et a1 (1986) studied 
the finite-size effects at the transition by a phenomenological theory and the Monte 
Carlo method. Lee and Kosterlitz (1991) studied the transition by a mimic partition 
function and the Monte Carlo method. Borgs et a1 (1991) discussed the finite-size 
scaling at the transition from a rigorous point of view. 

The results of these studies are that the specific heat and the susceptibility increase 
with Ld and the effective transition temperature and magnetic field, which are the 
locations of their extrema, approach the transition temperature and magnetic field 
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in the infinite system as LWd, respectively (at the asymmetric field-driven fust-order 
phase transition of the system with the coexistence of two phases, however, as L-2d).  

When the previously mentioned discontinuities are small, the aansition is called 
weak. It is well hown that the transition of the five-state ferromagnetic Potts model 
on the square lattice is weak. It is diliicult to recognize the order of the transition 
as first order by numerical methods. Peczak and Landau (1989) analysed the finite- 
size effect of the specific heat of the model and found that the system behaved as 
if the transition was second order. Yamagata and Kasono (1992), however, showed 
that the finitesize effect in the interfacial adsorption phenomena (Selke 1984) of the 
model was first order even at the weak transition. Although it is useful to investigate 
finite-size effects to identify the order of the transition (Fukugita ef a1 1990, Lee 
and Kosterlitz 1990), its success depends on the selection of physical quantities to be 
analysed. 

Researchers have mainly carried out simulations in models with first-order phase 
transitions: the two-dimensional Ising model in the magnetic field and the Potts 
models in two dimensions (Baxter 1973). In this paper, for the fust time, we study 
the fmite-size effects for a four-state antiferromagnetic Potts model with next-nearest- 
neighbour ferromagnetic interactions on the simple cubic lattice under fully periodic 
boundary conditions by the Monte Carlo method. In the next section we describe the 
model and the results by Banavar and Wu (1984). In section 3 we present definitions 
of the physical quantities observed in the simulations. We analyse the Monte Carlo 
data in section 4. In section 5 we discuss the order of the transition on the model. 

2. The model 

The Hamiltonian of the model studied in this paper is given by 

~ ~ = J I ~ ~ ( U ; , O ; . ) - J Z ~ ~ ( ~ T , , O , )  uiE{1,2,3,4) (1) 

where ui is a Pot& spin variable located at the ith lattice site; 6 is Kronecker’s delta 
function; the first summation is over all nearest-neighbour pairs and the second is 
over all next-nearest-neighbour pairs on a simple cubic lattice; J1 and J, are the 
strength of the interactions and are both positive. 

Banavar and Wu (1984) described a phase diagram of the model using the mean- 
field approximation. It indicates that when J z / J l  is sufficiently large, the model has 
a first-order phase transition between low-temperature ordered phases and a high- 
temperature disordered phase. (When J2/  J1 is small, it undergoes successive phase 
transitions. A Monte Carlo study for the model in two dimensions was carried out 
by Grest and Banavar (1981). In this paper they are not discussed.) To understand 
the ordered phases, let us consider the ground state. It is twelve-fold degenerate 
because one spin state is favoured on one sublattice, while a different spin state is 
favoured on the other sublattice, e.g. U; = 1 on the A sublattice and ui = 2 on the 
B sublattice. They also carried out Monte Carlo simulations on a 12 x 12 x 12 simple 
cubic lattice. They obselved a discontinuity in the order parameter and concluded 
that the transition was first order. 

The singularity, however, can only be seen in the infinite system. It seems that the 
discontinuity was due to the short Monte Carlo steps which were 1000. There is no 
hysteresis for the data over many steps even at lirst-order phase transitions (Challa 
et al 1986). 

(iJ) (W) 
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3. Monte Carlo simulations 

We use the Metropolis Monte Carlo technique (Binder 1979) to simulate the model 
(1) with J z / J 1  = 10 on an L x L x L simple cubic lattice under fully periodic 
boundary conditions. We start each simulation from a high temperature with a 
random configuration and then gradually cool the system. The peudo-random 
numbers are generated by the lhsworthe method (l3uda 1988). Measurements 
at a temperature are over lo6 Monte Carlo steps per spin (Mcshpin) for L = 6, 
8, 10 and 12, 2 x lo6 MCS/spin for L = 14 and 3 x lo6 Mcs/spin for L = 16 after 
discarding 1 6  ~cs/spin to attain equilibrium. We have checked that simulations from 
the ground-state configuration and a random one give consistent results. We use the 
coarse-graining scheme (Landau 1976) to calculate the statistical errors. Each run 
is divided into ten blocks and the standard deviations are obtained from the ten 
subaverages. 

We measure the energy per spin 

E = ( x ) / L ~  (2) 
where (. . .) denotes a Monte Carlo average. E /  J1 takes a value -6Jz/ J1 when 
the system With J z / J 1  > 0 is in the ground state described in section 2 and 
E /  J1 = 3/4 - (312) J z /  J1 at infinite temperature. Since J z /  J1 = 10 in our model, 
-60 < E / J ,  < -14.25. The specific heat is calculated With 

where IC, is the Boltzmann constant and p = l/(k,T). The fourth-order cumulant 
of the energy (Challa et al 1986) is defined by 

In the infinite system, at a first-order phase transition V takes a non-trivial value 
Vmi,(< 5) at the transition temperature and V = 3 at the other temperatures, while 
for a second-order phase transition V = 2 at all temperatures. 

Let us consider a magnetization. For antiferromagnetic models, it is necessary to 
define sublattice order parameters. According to Ono (1986), in the four-state Potts 
model, a set of the order parameters is given by 

C/kB = p 2 [ ( X 2 )  - (X) ’ ] /L3  

v = 1 - ; ( x ~ ) / ( x z ) ~ .  

(3) 

(4) 

e; = (Pi + P; - P; - P 2 / J ? ;  

e3 = (P? - P; - P; t Pi)/& 
G = (Pi - P I  t P; -Pi)/& 
p k  = 2Ni /L3 n = 1,2,3,4 

where s denotes the A or B sublattice and N:, is the number of spins which take the 
value n on the s sublattice. ( p ; )  is a probability of a Potts spin having the value n on 
the s sublattice. p:, are satisfied with a condition xi=, p;  = 1 for each sublattice. 
We measure a quantity, as the magnetization, 

where 5- = [~~=1(C; )2]1 /2  and C; = (Cf - cB)/2. M takes a value when 
the system with J,/ 5, > 0 is in the ground state described in section 2 and M = 0 
at infinite temperature. We define a susceptibility by 

M = (C-) (5) 

x = L3[((c-)z) - (C-)7.  (6) 
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4. Monte Carlo results 

As is shown later, we want to estimate extrema of physical quantities for each lattice 
size, or an intersection between physical quantities with different lattice sizes. Since 
it is difficult to get them from raw Monte Carlo data, we decided to adopt the 
procedure of B-spline smoothing muds 1988). We fitted our Monte Carlo data by 
the fourth-order B-spline. 

Hereafter, for brevity, the physical quantities are presented in units kB = 1 = ,TI. 

-20 I I 

-40 I 
34.0 34.2 34.4 34.6 34.8 35.0 

T 
Figure 1. The temperature dependence of the energy per spin for L = 6, 8, 10, 12, 
14 and 16. The vertical lines denote Monte Carlo data with error bars The full "es 
are obtained by the B-splinc fitting. Ar L increases, the slope of the curve becomes 
steeper. 

4.1. Energy 
Figure 1 shows the temperature dependence of the energy per spin E ( T ,  L )  defined 
by (2) for various lattice sizes. There is an intersection between the curves with 
different size L. Let us define an effective transition temperature T&( L) in a finite 
system by E(T&(L),L)  = E(T&,(L),L+2) (Borgs ef aZ 1991, Borgs and Janke 
1992). In figure 2 the size dependence of T&( L) is presented. It does not exhibit 
monotonic behaviour and there is a maximum. It is difficult to extrapolate T, which 
is the transition temperature in the infinite system because of this behaviour. As a 
function of L, E( T&( L) , L )  behaves like T&( L). 

4.2. Specific hear 

Figure 3 shows the temperature dependence of the specific heat C(T,  L) defined by 
(3) for various lattice sizes. We plot the specific heat maximum Cmm( L) against L3 
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34 .5 ,  , , , I I I , , , , 

L 

Flgore 2 
E(Tz',(L), L )  = E(T&(L), L + 2). Ermm are less than symbol size. 

The size dependence of the effective transition temperature defined 

T 

Figure 3. me temperature dependence of the specific heat. The meaning of lhe awes 
and the vertical lines is the same as in figure 1. As L increases, the shape of the cume 
tecomes sharper. 

in figure 4. It is clear that Cm,(L) is proportional to L3 for large L: 

c,,,(L) = a,+ a 1 ~ 3  (7) 
where au and ul are constants. In figure 5 the location T&,( L )  of Cm( L )  is plotted 
against L-3. Although the approach to the asymptotic behaviour seems to be slow, 
it is consistent with a prediction of the finite-size scaling theory at a fist-order phase 
transition: 

C=(L) = T, + a2L-3 (8) 
where uz is a constant. We obtain a result T, = 34.354 f 0.009 by using the linear 
regression from the data T&(L) with L = 12, 14 and 16. 
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0 

Figurr 4 The size dependence of the specific heat 
madmum. The full line obtained by the linear 
regression shows -12.2(6) + 0.0371(2)L3. 

34.30 
0 0.001 0.002 0.003 0.004 0.005 

l /L= 

Finre 5. The size dependence of the effective 
transition temperature defined as the location 
where lhe speciftc heat t a b  the maximum. The 
full line obtained by the h e a r  regression shows 
34.354(9) + 160(21)L-3. 

0.67 I I 

I 
34.4 34.8 35.2 35.6 

T 

Figure 6 ?he temperature dependence of the fourth-order cumulant of the energy. The 
meaning of the turves and the vertical lines is the same as in figure 1. As L increases, 
the shape of the curve becomes sharper. 

4.3. Fourth-order cumulant 

Figure 6 shows the temperature dependence of the fourthader cumulant V( T,  L) 
of the energy defined by (4) for various lattice sizes. In figure 7 the size dependence 
of the fourth-order cumulant minimum Vm,( L) is shown against L-3. For large L, 
the approach to Vmin which is the value of the infinite system may be approximate to 
the relation: Vmi,(L) = Vmin + b,L-3 where b,  is a positive constant. It is a result 
of the finite-size scaling theoly at a lirst-order phase transition. By using the linear- 
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regression from the data Vmi,(L) with L = 12, 14 and 16, we estimate V,, to be 
0.5836f0.0008. An effective transition temperature T&(L) which is the location of 
V&,,(L) is plotted against L-3 in figure 8 The behaviour is consistent with a result 
of finitesize scaling theory: T&(L) = T,+ b,L-3 with a positive constant b,. From 
the data TZn( L) with L = 12, 14 and 16, we obtain a result T, = 34.355 f 0.003. 

0.57; I 
0.001 0.002 0.00s 0.004 0.005 

l / Y  

FIgom 7. The sue dependence of the minimum 
of the fourth-order cumulant of the energy. The 
full h e  obtained by the linear regression shows 
0.5S36(8)+34(2)L-3. E m n  are less than symbol 
size. 

34.2 ' I 
0 0,001 0.002 0.003 0.004 0.005 

1 1 ~ 3  

Feure S The size dependence of the effective Iran- 
sition temperature de6ned as the location where the 
fourth-order cumulant takes he minimum. The 
full line obtained by the linear regression shows 
34.355(3) +251(7)L-3. Enon are leu than sym- 
bol size. 

We will give an another effective transition temperature in a finite system. Let 
us consider V ( T , L )  of the system with the lattice size L below T&(L) in figure 6. 
We see that there is an intersection between the curves with L and L + 2 ( L  = 8, 
10, 12 and 14) and the position may tend to T, which is estimated from C(T, L )  or 
x ( T , L ) .  Thus we define T&(L) by 

and show it in figure 9. T, is estimated to be 34.341 by the least-squares fitting 
assuming 

where T,, b3 and 

4.4. Magnetization 
Figure 10 shows the temperature dependence of the magnetization M ( T ,  L) defined 
by (5) for various lattice sizes. The behaviour is similar to that of -E(T ,L)  as 
is shown in figure 1. By analogy with T&(L), we define an effective transition 
temperature T&( L )  as follows 

Figure 11 shows the size dependence of T&*( L )  as a function of L. Assuming 

where T,, e and Lzs are the parameters of the fitting, we obtain results T, = 34.355 
and 34.359 for L = &14 and &14, respectively. We observe that the value of 
M(T&(L) ,  L) decreases rapidly as L increases and then may saturate. 

V(TZs(L),L) = V ( T L ( L ) , L + 2 )  (9) 

T k ( L )  = Tc + b , a p ( - L / L & )  (10) 
are the parameters of the fitting. 

M(T&(L),  L )  = M(T%L), L + 2). 

T ~ , ( L )  = T, + cexp(-L/L&) 

(11) 

(12) 
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34.55 

34.50 

TL- 34.45 

34.40 

34.35 

jllllllllll 
34’3a5 E 7 8 9 10 11 12 13 14 15 

L 

Figure 9. The size dependence of the effective transition temperature defined by (9). 
The full curve obtained @ the least-squarer fitting shows 34.341 + l.Mexp(-L/3.35). 
The horizontal Line denotes T = 34.341. Enom are less than symbol sue. 

Figure 10. Tne temperaturr dependence of the magnetization. The meaning of the 
cunrer and the venial lines is the Same as in 6gure 1. As L increases, the slope of the 
curve bemmes steeper. 

4.5. SusceptibiIity 

The behaviour of the susceptibility x ( T , L )  defined by (6) is simiiar to that of 
C(T, L) as iS shown in figure 3. The susceptibility maximum xma( L )  iS proportional 
to L3 as is shown in figure 4 and behaves as xma( L )  = -31(2) + 0.0489(6)L3 for 
L = 12, 14 and 16. An effective transition temperature T&( L) which is the location 
of xmaX(L) approaches T, similar to T&(L) as is shown in figure 8 and behaves as 
T&(L) = 34.344(5) + 208(12)L-3 for L = 12, 14 and 16. 
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34.40 

34.30 

T& 34.25 1: ‘1 
5 6 7 ~8 9 10 11 12 13 14 15 

L 

34.15 

34.10 

34.05 

34.00 

Figure 1L n e  Size dependence of the effective transition temperature deEned by (11). 
The full curye obtained bj the least-squares fitting shows 34.355 - M).Bap(-L/l.OS). 
If we neglect the data of L = 4 then we get the result 34.359 - 1.78ap(-L/2.00). 
The horizontal Line denotes T = 34.355. Elma are less than symbol size. 

5. Discussions 

By the Monte Carlo method we have calculated the energies, the specific heats, the 
fourth-order cumulants, the magnetizations and the susceptibilities of the four-state 
antiferromagnetic Potts model which includes next-nearest-neighbour ferromagnetic 
interactions (5, = 10) on the simple cubic lattices. 

There were intersections between the curves of E(T, L) with L and L + 2. The 
existence of the intersections on the q-state Potts models was proved for d 2 2 
and q large enough (Borgs er a1 1991, Borgs and J a k e  1992) and was founded for 
d = 3 and q = 3 by the Monte Carlo simulations (Fuhgita et a1 1990). It may 
be characteristic of temperature-driven first-order phase transitions. According to 

Although we could not confirm it, we observed T&,(L) tended to T, rapidly. 
Cma( L) and xmax( L) grew with L3 and T&( L) and T&,( L) approached T, 

from above as L-3 for large L. The results are consistent with the predictions of the 
linite-size scaling at first-order phase transitions. 

It is well hown that the fourth-order cumulant of the energy plays a role as an 
indicator to identify the nature of transitions (Challa et U! 1986). Vmh( L) and T , , , ( L )  
of our model showed the characteristic behaviour of first-order phase transitions. 

On account of these results we conclude that the transition of the model (I) with 
J ,  = 10 is first order. We think that our model has a transition with the coexistence 
of twelve ordered phases and one disordered phase at the transition temperature. 

We defined the new effective transition temperatures by (9) and (11) and found 
that they behaved as (10) and (12), respectively. The values T, extrapolated from 
T&( L) and TZ( L) agreed With those from “Ex( L), Tzn( L) and Tiax( L )  within 
errors. Therefore it seems that our definitions are reasonable. 

At last we will mention the latent heat I which is the energy gap at the transition 
temperature in the infinite system. According to the finite-size scaling theory (Lee 
and Kmterlitz 1991), al in (7) and a2 in (8) are related to 1 as follows: al = ;Iz/TZ 
and a, = 1-IG In q where q is the number of the low-temperature phases. They are 
clearly positive numbers. We can estimate I from the slopes in figures 4 and 5 using 

the finite-size scaling theory, one has a relation [T&(L) - T,I = O(e-co”s‘nt.L 1. 
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T, = 34.354 f 0.009 and q = 12. Unfortunately we did not get consistent results: 
1 = 13.23 f 0.04 and 18 & 2, respectively. 
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